Understanding cortical computation through the lens of joint-embedding predictive architectures
Mohammadi, A.G.*, Halvagal, M. S.*, & Zenke, F.
bioRxiv, 2025
Our theory viewing cortical representation learning as predictive SSL with a JEPA.
Mohammadi, A.G.*, Halvagal, M. S.*, & Zenke, F.
bioRxiv, 2025
Our theory viewing cortical representation learning as predictive SSL with a JEPA.
Halvagal, M. S.*, Laborieux, A.*, & Zenke, F.
Advances in Neural Information Processing Systems 36 (NeurIPS 2023), 2023
Our paper explaining why the BYOL and SimSiam methods don’t suffer from representation collapse.
Halvagal, M. S., & Zenke, F.
Nature Neuroscience, 2023
Our theory that Hebbian plasticity helps predictive SSL to prevent representational collapse.
Iwane, F., Halvagal, M. S., Iturrate, I., Batzianoulis, I., Chavarriaga, R., Billard, A., & Millán, J. D. R.
2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 2019
This paper presents a proof of concept that EEG error potentials from a BCI can be used to course-correct the motion of a robotic arm in real-time.
( paper )